ON THE NONSTANDARD REPRESENTATION OF MEASURES

BY

C. WARD HENSON

ABSTRACT. In this paper it is shown that every finitely additive probability measure μ on S which assigns 0 to finite sets can be given a nonstandard representation using the counting measure for some *-finite subset F of *S. Moreover, if μ is countably additive, then F can be chosen so that

$$\int f d\mu = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} {}^*f(p)\right)$$

for every μ -integrable function f. An application is given of such representations. Also, a simple nonstandard method for constructing invariant measures is presented.

Let S be a set in some set theoretical structure \mathbb{M} and let S be the corresponding set in an enlargement \mathbb{M} of \mathbb{M} . Bernstein and Wattenberg have noted [2] that if S is a S-finite subset of S, then a finitely additive probability measure S can be defined for all subsets S of S by

(1)
$$\mu_{E}(A) = \operatorname{st}(\|*A \cap F\|/\|F\|).$$

They used this observation as the basis for a nonstandard proof of the theorem, due to Banach [1], which states that Lebesgue measure on [0, 1] can be extended to a totally defined (finitely additive) measure which is invariant under translations (mod 1).

This paper concerns the representation of probability measures as non-standard counting measures μ_F . Let μ be any finitely additive probability measure which is defined on an algebra $\mathcal B$ of subsets of $\mathcal S$ and which satisfies $\mu(A)=0$ for each finite set A in $\mathcal B$. In $\mathcal S$ 1 it is shown that there exists a *-finite subset F of * $\mathcal S$ which satisfies $\mu=\mu_F$ on $\mathcal B$. This has the consequence that for any bounded, μ -integrable function f,

(2)
$$\int f d\mu = \operatorname{st} \left(\frac{1}{\|F\|} \sum_{p \in F} {}^*f(p) \right).$$

Received by the editors August 13, 1971.

AMS (MOS) subject classifications (1970). Primary 02H25, 26A98, 28A10; Secondary 28A70, 46B10.

Moreover, if \mathcal{B} is a σ -algebra and μ is countably additive, then F can be chosen so that (2) holds for every μ -integrable function.

Closely related to these results is a nonstandard representation for bounded linear functionals on the space l_{∞} of bounded sequences in R, which was given by Robinson [7]. In §2 a straightforward extension of Robinson's result is used to give a nonstandard proof of a convergence result (Theorem 3) for bounded linear functionals on C(X), where X is a compact, Hausdorff space.

Also, in §3 a nonstandard construction of invariant measures is given which yields a particularly simple proof of Banach's extension result for Lebesgue measure.

Preliminaries. The given structure \mathbb{M} is assumed to have the set R of real numbers as an element (thus also the set N of nonnegative integers). Moreover, the embedding $x\mapsto^*x$ of \mathbb{M} into $^*\mathbb{M}$ is taken to be the identity on R. The standard part of a finite element p of *R is denoted by $\operatorname{st}(p)$. If $p, q \in ^*R$, then $p=_1 q$ means that p-q is infinitesimal.

For each set S in \mathbb{M} and each *-finite subset F of *S, $\|F\|$ is the ''cardinality' of F, in the sense of * \mathbb{M} . That is, if c is the function assigning to each finite subset A of S the cardinality of A, then $\|F\| = {}^*c(F)$. Alternately, $\|F\|$ is the smallest element ω of *N for which there is an internal bijection between F and $\{\omega' \mid \omega' \in {}^*N \text{ and } \omega' < \omega\}$. (For an introduction to the methods of nonstandard analysis see [5], [6] or [8].)

Given a set S, $\mathcal{P}(S)$ is the algebra of all subsets of S. Also, $l_{\infty}(S)$ is the linear space of all bounded, real valued functions on S, furnished with the sup norm. In this paper μ is a measure on S if it is a nonnegative, finitely additive set function defined on an algebra of subsets of S. If μ is normalized to satisfy $\mu(S)=1$, then it is a probability measure. The notation $A \triangle B$ will be used for the symmetric difference, $(A \sim B) \cup (B \sim A)$, of two subsets of S.

1. Nonstandard representations. Let μ be a probability measure on $\mathcal{P}(S)$ and let ϕ be the linear functional on $l_{\infty}(S)$ defined by integration with respect to μ . Then ϕ is a positive linear functional of norm 1. Therefore, by the principal result of [7], there exist a *-finite subset F of *S and an internal function λ from F to *R which satisfy

$$\operatorname{st}\left(\sum_{p \in F} |\lambda(p)|\right) = 1$$

and, for each f in $l_{\infty}(S)$,

$$\phi(f) = \operatorname{st}\left(\sum_{p \in F} \lambda(p) * f(p)\right).$$

(Robinson's result [7] only covers the case S=N explicitly, but his argument is easily extended to cover the general case.) Therefore the measure μ has the representation

(3)
$$\mu(A) = \operatorname{st}\left(\sum_{p \in {}^{*}A \cap F} \lambda(p)\right).$$

Theorem 1 below states that, if $\mu(\{s\}) = 0$ for every $s \in S$,(1) then F can be chosen so that μ is represented as in (3), but with every $\lambda(p)$ equal to $1/\|F\|$. That is, $\mu(A) = \mu_F(A)$ for every $A \subset S$.

Theorem 1. If μ is a probability measure on $\mathcal{P}(S)$ which satisfies $\mu(\{s\}) = 0$ for each $s \in S$, then there is a *-finite set $F \subset *S$ for which $\mu = \mu_F$.

Proof. Since *M is an enlargement of M, there exists a *-finite subset \mathfrak{A} of * $\mathfrak{P}(S)$ which satisfies * $A \in \mathfrak{A}$ for each $A \subset S$. For each internal subset \mathfrak{F} of \mathfrak{A} , define

$$E(\mathcal{F}) = \bigcap \{ E \mid E \in \mathcal{F} \} \cap \bigcap \{ *S \sim E \mid E \in \mathcal{C} \sim \mathcal{F} \},$$

so that the function taking \mathcal{F} to $E(\mathcal{F})$ is internal. Let $\mathfrak{C}' = \{E(\mathcal{F}) | \mathcal{F} \text{ is an internal subset of } \mathfrak{C}\}$, so that \mathfrak{C}' is a *-finite set. Moreover, \mathfrak{C}' is a partition of *S, and each member of \mathfrak{C} is the union of an internal subset of \mathfrak{C}' .

Let $\omega = \|\mathbf{C}'\|$ and choose $\tau \in {}^*N$ so that ω^2/τ is infinitesimal. For each E in \mathbf{C}' define $\tau(E)$ in *N by the inequalities

(4)
$$\tau(E)/\tau \leq *\mu(E) < (\tau(E) + 1)/\tau.$$

Then the function $E \mapsto \tau(E)$ on \mathfrak{C}' is internal. Moreover, if E is a *-finite element of \mathfrak{C}' , then * $\mu(E) = 0$, from which it follows that $\tau(E) = 0$. Therefore there exists an internal function f which is defined on \mathfrak{C}' and which satisfies: For each E in \mathfrak{C}' , f(E) is a *-finite subset of E and $||f(E)|| = \tau(E)$.

It will be shown that the set F defined by

$$F = \bigcup \{ f(E) | E \in \mathfrak{A}' \}$$

satisfies the condition $\mu = \mu_F$. Since the elements of \mathfrak{C}' are pairwise disjoint, the elements of $\{f(E) | E \in \mathfrak{C}'\}$ have the same property, and therefore,

$$||F|| = \sum_{E \in \mathbf{C}'} r(E).$$

Moreover, since the function μ is *-finitely additive,

⁽¹⁾ The added condition on μ is only slightly more restrictive than necessary. Indeed, if F is infinite and $s \in S$, then $\mu_F(\{s\}) \le \operatorname{st}(1/\|F\|) = 0$. If F is finite, say with k elements, then μ_F is of the form $\mu = k-1(\mu_1 + \cdots + \mu_k)$, where each of the measures μ_i takes on as values only 0 and 1.

$$1 = *\mu(*S) = \sum_{E \in \mathcal{C}'} *\mu(E).$$

Therefore, from the inequalities (4) follows

$$||F||/\tau < 1 < ||F||/\tau + \omega/\tau$$

by summing over E. That is, by the choice of τ , $\omega(\|F\|/\tau-1)$ is infinitesimal.

Now let A be any element of \mathfrak{A} and let \mathfrak{F} be the collection of E in \mathfrak{A}' which are subsets of A. Therefore A is the union of \mathfrak{F} , by the construction of \mathfrak{A}' . It follows that

$$||A \cap F|| = \sum_{E \in \mathfrak{F}} \tau(E)$$
, and $*\mu(A) = \sum_{E \in \mathfrak{F}} *\mu(E)$.

Therefore

(5)
$$*\mu(A) - \frac{\|A \cap F\|}{\|F\|} = \sum_{E \in \mathfrak{F}} \left(*\mu(E) - \frac{\tau(E)}{\|F\|} \right).$$

But for each E in G'.

$$|*\mu(E) - \tau(E)/||F|| | \le |*\mu(E) - \tau(E)/\tau| + |\tau(E)/\tau - \tau(E)/||F|| |$$

$$< 1/\tau + (\tau(E)/||F||) | ||F||/\tau - 1| < 1/\tau + ||F||/\tau - 1|.$$

Thus (5) implies

$$|*\mu(A) - ||A \cap F||/||F|| | \le \omega/\tau + \omega ||F||/\tau - 1|$$

which is infinitesimal. In particular, for each $A \subset S$,

$$\mu(A) = *\mu(*A) = st(||*A \cap F||/||F||) = \mu_F(A).$$

This completes the proof.

While Theorem 1, as stated, applies only to totally defined measures, it is valid for any probability measure μ which is defined on an algebra of subsets of S and which assigns measure 0 to any finite set in its domain. This is because any such measure can be extended to a measure which satisfies the conditions of Theorem 1.

A different nonstandard representation for measures, based on partitions of *S rather than * finite subsets, has been developed and applied by Peter Loeb [5], [6].

Lemma 1. Let E be any *-finite subset of *S and let F be an internal subset of E which satisfies ||F||/||E|| = 1. Then $\mu_F = \mu_E$ on $\mathcal{P}(S)$ and

$$\int f d\mu_E = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *f(p)\right)$$

for each f in $l_{\infty}(S)$.

Proof. Let A be any subset of S. Then

$$|\|*A \cap E\|/\|E\| - \|*A \cap F\|/\|E\|| \le \|E \sim F\|/\|E\| =_1 0.$$

Therefore

$$\mu_F(A) = \operatorname{st}(\|F\|/\|E\| \cdot \|*A \cap F\|/\|F\|) = \mu_F(A).$$

Now let f be any element of $l_{\infty}(S)$, and define

$$\psi(f) = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *f(p)\right).$$

Then ψ is a bounded linear functional on $l_{\infty}(S)$. Also, if V is the subspace of $l_{\infty}(S)$ generated by the characteristic functions, then ψ agrees with the μ_E -integral on V. The fact that V is norm-dense in $l_{\infty}(S)$ implies that ψ and the μ_E -integral are equal on all of $l_{\infty}(S)$.

Now let $\mathcal B$ be a σ -algebra of subsets of S and let μ be a countably additive probability measure on $\mathcal B$ which satisfies $\mu(A)=0$ for each finite set A in $\mathcal B$. There exists an extension $\widetilde{\mu}$ of μ to $\mathcal P(S)$ which satisfies $\widetilde{\mu}(\{s\})=0$ for $s\in S$. By Theorem 1, there exists a *-finite subset F of *S which satisfies $\widetilde{\mu}=\mu_F$, and thus $\mu(A)=\mu_F(A)$ for every A in $\mathcal B$.

For any bounded, μ -integrable function f, $\int f d\mu = \int f d\widetilde{\mu}$. Therefore, by Lemma 1,

(6)
$$\int f d\mu = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} {}^*f(p)\right).$$

However, for unbounded, μ -integrable functions (6) may not be true. (Indeed, if f is any unbounded function on S, then F may be chosen satisfying $\mu = \mu_F$ on \mathcal{B} , but such that the sum $\|F\|^{-1} \sum_{p \in F} f(p)$ is infinite.) It is possible, nonetheless, to choose F in such a way that (6) is true for every μ -integrable function.

It is convenient to assume that *M is κ -saturated (in the sense of [7]), where κ is any cardinal number greater than the number of functions from S to R. The remainder of this section is devoted to showing that, under this assumption, it is possible to represent μ on $\mathcal B$ in such a way that (6) holds for every μ -integrable function.

Given $n \in N$ and a function f from S to R, define f_n on S by

$$f_n(x) = \begin{cases} f(x) & \text{if } |f(x)| \le n, \\ 0 & \text{otherwise.} \end{cases}$$

Each f_n is a bounded function, and it is measurable whenever f is. Also, if $\omega \in {}^*N$ and $p \in {}^*S$, then

$$*f_{\omega}(p) = \begin{cases} *f(p) & \text{if } |*f(p)| \leq \omega, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2. Let E be any *-finite subset of *S which satisfies $\mu = \mu_E$ on $\mathcal B$ and let f be a nonnegative, μ -integrable function. There exists an internal subset F_f of E which satisfies $\|F_f\|/\|E\| = 1$ and, for any internal subset F of F_f

$$\frac{\|F\|}{\|E\|} = {}_{1} 1 \longrightarrow \int f d\mu = \operatorname{st} \left(\frac{1}{\|F\|} \sum_{p \in F} {}^{*}f(p) \right).$$

Proof. For each $n \in N$, let $A_n = \{x \mid f(x) > n\}$. Then $\{A_n \mid n \in N\}$ is a decreasing chain of sets in \mathcal{B} and $\bigcap \{A_n \mid n \in N\} = \emptyset$. Thus the sequence $\{\mu(A_n)\}$ decreases monotonically to 0. Since $\mu = \mu_E$ on \mathcal{B} , it follows that for each $\delta > 0$ in R, there exists $n_0 \in N$ which satisfies

$$n \geq n_0 \longrightarrow \|A_n \cap E\|/\|E\| < \delta.$$

If ω is an infinite member of *N , then ${}^*A_{\omega} \subset {}^*A_n$, so $\|{}^*A_{\omega} \cap E\|/\|E\| < \delta$. This shows that for every such ω ,

(7)
$$||*A_{\omega} \cap E||/||E|| = 10.$$

Since f is nonnegative, the sequence of integrals $\int f_n d\mu$ is increasing. By the monotone convergence theorem, the supremum of this sequence is $\int f d\mu$. If $\int f d\mu = \int f_n d\mu$ for some $n \in N$, then $\mu(A_n) = 0$ and hence

$$||E \sim *A_n||/||E|| = 1.$$

In this case let $F_f = E \sim {}^*A_n$. If $F \subset F_f$ and ||F|| / ||E|| = 1, then

$$\int f d\mu = \int f_n d\mu = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *f(p)\right)$$

since $f = f_n$ on F and $\mu_F = \mu_E$.

Therefore it may be assumed that $\iint_n d\mu < \iint_n d\mu$ for all $n \in \mathbb{N}$. Thus

$$\frac{1}{\|E\|} \sum_{p \in E} *f_n(p) < \int f d\mu$$

for all $n \in \mathbb{N}$. It follows that there is an infinite ω in *N which satisfies

$$\frac{1}{\|E\|} \sum_{p \in E} *f_{\omega}(p) < \int f d\mu.$$

In this case let $F_f = E \sim {}^*A_{\omega}$, so that $||F_f||/||E|| = 1$ by (7). Suppose F is any internal subset of F_f which satisfies ||F||/||E|| = 1. Then, for each $n \in N$,

$$\int f_n d\mu \le \operatorname{st} \left(\frac{1}{\|F\|} \sum_{p \in F} *f(p) \right)$$

$$\le \operatorname{st} \left(\frac{1}{\|E\|} \sum_{p \in E} *f_{\omega}(p) \right) = \int f d\mu,$$

using Lemma 1 and the fact that $f = f_{\omega}$ on F. By the monotone convergence theorem

$$\operatorname{st}\left(\frac{1}{\|F\|}\sum_{p\in F} *f(p)\right) = \int f d\mu,$$

completing the proof.

Theorem 2. Let $\mathcal B$ be an σ -algebra of subsets of S and let μ be a countably additive probability measure on $\mathcal B$ which satisfies $\mu(A)=0$ for each finite set A in $\mathcal B$. There exists a *-finite subset F of *S which satisfies $\mu=\mu_F$ on $\mathcal B$ and

$$\int f d\mu = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *f(p)\right)$$

for every u-integrable function f.

Proof. Let I be the set of nonnegative, μ -integrable functions. Since each μ -integrable function is the difference of two elements of I, it suffices to find an F which satisfies the conditions of the theorem for every f in I. By Theorem 1 (and the remarks following) there exists a *-finite subset E of *S which satisfies $\mu = \mu_E$ on \mathcal{B} . For each $f \in I$, let F_f be a subset of E which satisfies the conditions of Lemma 2. Given $n \in N$ and $f \in I$, define

$$A(n, f) = \{F \mid F \text{ is an internal subset of } F_f \text{ and } ||F|| / ||E|| > n/(n+1)\}.$$

This family of internal sets has cardinality card $(N \times I)$, which is less than κ . Moreover, the family has the finite intersection property. $(F_{f_1} \cap \cdots \cap F_{f_n})$ is an element of $A(m_1, f_1) \cap \cdots \cap A(m_n, f_n)$ whenever $m_1, \cdots, m_n \in N$ and $f_1, \cdots, f_n \in I$.) Since *M is κ -saturated, there exists a *-finite set F which satisfies $F \in A(n, f)$ for every $n \in N$ and $f \in I$ (Theorem 2.7.12 of [5]). That is, $F \subset F_f$ for every $f \in I$, and $\|F\|/\|E\| = 1$. It follows by Lemma 2 that F satisfies the conditions of the theorem.

Remark. Theorem 2 is true even if *M is not κ -saturated, but the proof of that fact is somewhat more complicated. The proof given here proves the stronger result that F can be chosen as a subset of any given set E which satisfies $\mu = \mu_F$ on \mathcal{B} .

2. An application. The following standard result can be proved easily using the Riesz Representation Theorem. The nonstandard proof given here uses the extension to $l_{\infty}(S)$ of Robinson's representation result [9] instead.

Theorem 3. Let X be a compact, Hausdorff space, $\{f_n\}$ a sequence in C(X) and ϕ a bounded linear functional on C(X). If $\{f_n\}$ is uniformly bounded on X and converges to 0 pointwise, then $\phi(f_n) \to 0$.

Proof. Let ϕ be any bounded linear functional on C(X). By the Hahn-Banach theorem, ϕ may be extended to a bounded linear functional ϕ on $l_{\infty}(X)$. By the extension to $l_{\infty}(X)$ of the principal result of [9], there exist a *-finite subset of *X and an internal function λ from F into *R which satisfy

$$\stackrel{\sim}{\phi}(f) = \operatorname{st}\left(\sum_{p \in F} \lambda(p) * f(p)\right)$$

for every f in $l_{\infty}(X)$, and $\Sigma_{p \in F} |\lambda(p)|$ is finite.

Let $\{f_n\}$ be a sequence in C(X) which is uniformly bounded on X by 1, and which converges to 0, pointwise. If $\phi(f_n)$ does not converge to 0, then it may be assumed (by taking a subsequence) that for some $\delta > 0$ in R, $|\phi(f_n)| > \delta$ for every $n \in N$. Let $M = \operatorname{st}(\Sigma_{p \in F} |\lambda(p)|) + 1$. For $n \in N$, define

$$A_n = \{x \mid x \in X \text{ and } |f_n(x)| \ge \delta/2M\}.$$

Therefore,

$$\delta < \left| \sum_{p \in F} \lambda(p) * f_n(p) \right|$$

$$\leq \sum_{p \in *A_n \cap F} |\lambda(p) * f_n(p)| + \sum_{p \in F \sim *A_n} |\lambda(p) * f_n(p)|$$

$$\leq \sum_{p \in *A_n \cap F} |\lambda(p)| + \frac{\delta}{2}.$$

Thus, for each $n \in N$, $\sum_{p \in {}^{*}A_{n} \cap F} |\lambda(p)| > \delta/2$. Now define μ' on $\mathcal{P}(X)$ by

$$\mu'(A) = \operatorname{st}\left(\sum_{p \in {}^{*}A \cap F} |\lambda(p)|\right)$$

for each $A \subset X$. Then μ' is a measure on $\mathcal{P}(X)$, and $\mu'(A_n) > \delta/2$ for every $n \in \mathbb{N}$. It follows that there is an infinite subset K of N such that $\{A_n \mid n \in K\}$ has the finite intersection property (see Lemma 17.9 of [4]). Since *M is an enlargement, there is an element p of *X which satisfies $| *f_n(p)| \ge \delta/2M$ for all $n \in K$. X is compact, so p is near-standard to some $x \in X$. In particular, $*f_n(p) = f_n(x)$ for every $n \in K$,

which contradicts the assumption that $f_n(x)$ converges to 0. Therefore $\phi(f_n)$ must converge to 0.

3. Constructing invariant measures. Let G be a group of permutations on S, and assume that G satisfies Følner's condition:

For each $a_1, \dots, a_n \in G$ and $k \in N$, there exists a finite set $A \subset G$ which satisfies $\|A \triangle Aa_i\|/\|A\| < 1/(k+1)$ for each $j=1,\dots,n$.

To apply the corresponding statement in ${}^*\!\mathbb{M}$, let E be a * -finite subset of *G which contains $\{{}^*g|g\in G\}$ and let ω be an infinite member of *N . Then there is a * -finite set $F\subset {}^*G$ which satisfies $\|F\triangle Fp\|/\|F\|<1/\omega$ for every $p\in E$. In particular,

(8)
$$g \in G \to ||F \triangle F^*g|| / ||F|| = 0.$$

If F satisfies (8), then μ_F is a probability measure on $\mathcal{P}(G)$ and μ_F is invariant under the action of G on itself by right multiplication. The principal result of [3] is, essentially, that the converse holds: If there is such a measure on $\mathcal{P}(G)$, then G satisfies $F \not o$ lner's condition.

Theorem 4. Let G be a group of permutations of S and let F be a *-finite subset of *G which satisfies (8). Let μ be any measure on $\mathcal{P}(S)$ and define $\stackrel{\sim}{\mu}$ by

$$\widetilde{\mu}(A) = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *\mu(p*A)\right)$$

for $A \subset S$. Then $\widetilde{\mu}$ is a G-invariant measure on $\mathcal{P}(S)$. Moreover, if $A \subset S$ satisfies $\mu(gA) = \mu(A)$ for every $g \in G$, then $\widetilde{\mu}(A) = \mu(A)$.

Proof. Each element of *G is a permutation of *S . Thus if A, B are disjoint subsets of S, then p^*A , p^*B are disjoint subsets of *S for each $p \in {}^*G$. Thus ${}^*\mu(p({}^*A \cup {}^*B)) = {}^*\mu(p^*A) + {}^*\mu(p^*B)$. From this the finite additivity of $\widetilde{\mu}$ is immediate.

Given A in $\mathcal{P}(S)$ and g in G,

$$\begin{aligned} |\widehat{\mu}(gA) - \widehat{\mu}(A)| &=_{1} \left| \frac{1}{\|F\|} \sum_{p \in F} (*\mu(p*g*A) - *\mu(p*A)) \right| \\ &\leq \frac{1}{\|F\|} \sum_{p \in F \triangle F^{*}g} *\mu(p*A) \\ &\leq \mu(S) \cdot \|F \triangle F^{*}g\| / \|F\| =_{1} 0. \end{aligned}$$

Therefore $\mu(gA) = \mu(A)$, so that μ is G-invariant.

Finally, suppose A is a subset of S which satisfies $\mu(gA) = \mu(A)$ for every $g \in G$. Then $\mu(p^*A) = \mu(A)$ for every $p \in G$. Therefore

$$\widetilde{\mu}(A) = \operatorname{st}\left(\frac{1}{\|F\|} \sum_{p \in F} *\mu(*A)\right) = \mu(A).$$

To prove Banach's extension result, let G be the group of all translations (mod 1) of [0,1], and let μ be any extension of Lebesgue measure to $\mathcal{P}([0,1])$. It is well known, and easy to prove using the decomposition theorem for finitely generated abelian groups, that every abelian group satisfies $F \emptyset$ lner's condition. Since G is abelian, Theorem 4 can be applied to obtain a G-invariant measure $\widehat{\mu}$ on $\mathcal{P}([0,1])$. If A is a Lebesgue measurable subset of [0,1], then $\mu(gA) = \mu(A)$ for every $g \in G$. Theorem 4 thus asserts that $\widehat{\mu}(A) = \mu(A)$; that is, $\widehat{\mu}$ is an extension of Lebesgue measure.

Acknowledgement. The author is indebted to L. C. Moore for some helpful conversations on the subject of this paper, and for a suggestion which simplified the proof of Theorem 3.

REFERENCES

- 1. S. Banach, Sur le problème c la mesure, Fund. Math. 4 (1923), 7-33.
- 2. A. R. Bernstein and F. Wattenberg, *Nonstandard measure theory*, Internat. Sympos. Applications of Model Theory to Algebra, Analysis, and Probability (Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 171-185. MR 40 #287.
- 3. E. Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243-254. MR 18, 51.
- 4. J. L. Kelley and I. Namioka, Linear topological spaces, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1963. MR 29 #3851.
- 5. P. A. Loeb, A nonstandard representation of measurable spaces and L_{∞} , Bull. Amer. Math. Soc. 77 (1971), 540-544. MR 43 #2488.
- 6. , A nonstandard representation of measurable spaces, L_{∞} and L_{∞}^* , Contributions to Nonstandard Analysis, North-Holland, Amsterdam, 1972.
- 7. W. A. J. Luxemburg, A general theory of monads, Internat. Sympos. Applications of Model Theory to Algebra, Analysis, and Probability (Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 18-86. MR 39 #6244.
- 8. M. Machover and J. Hirschfeld, Lectures on nonstandard analysis, Lecture Notes in Math., vol. 94, Springer-Verlag, Berlin and New York, 1969. MR 40 #2531.
- 9. A. Robinson, On generalized limits and linear functionals, Pacific J. Math. 14 (1964), 269-283. MR 29 #1534.
 - 10. ----, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706